If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3y+4y^2=0
a = 4; b = 3; c = 0;
Δ = b2-4ac
Δ = 32-4·4·0
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3}{2*4}=\frac{-6}{8} =-3/4 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3}{2*4}=\frac{0}{8} =0 $
| f/9-9=8 | | 3-(x+7)=3(2x)+1 | | x/(-2)=-6 | | x+10+59=90 | | 2/3=t+6/7 | | 2x*1+89=10x*2 | | (2/3)*y+5=9 | | 7x-5+60=20 | | 20+m=8 | | 9x+15+36=15x-9 | | 42=-7a+7 | | x^2-180x-225=0 | | 5h+25=6h+18 | | 18x=204 | | -2.4x=14.4 | | 16925*x=2898.25 | | .10x+0.05(8-x)=0.10(9) | | 29=y÷4+11 | | x^2+2x2-9x+18=0 | | 11x-6=2x-69 | | x2+2x2-9x+18=0 | | 2x-10=5x+40 | | x3+2x2-9x+18=0 | | 45=36x+24 | | 60=27x+2 | | 1/2(2x+6)9=180 | | P=2n2-40n-165 | | 9(x+1)-(4x-1)=2 | | x-x/3+5x=x-2x | | 3x+15/6=5x+18/8 | | x/5x-2=2/11 | | 8/5x=2/7 |